skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MD Arafat Kabir, Ehsan Kabir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dominance of machine learning and the ending of Moore’s law have renewed interests in Processor in Memory (PIM) architectures. This interest has produced several recent proposals to modify an FPGA’s BRAM architecture to form a next-generation PIM reconfigurable fabric [1], [2]. PIM architectures can also be realized within today’s FPGAs as overlays without the need to modify the underlying FPGA architecture. To date, there has been no study to understand the comparative advantages of the two approaches. In this paper, we present a study that explores the comparative advantages between two proposed custom architectures and a PIM overlay running on a commodity FPGA. We created PiCaSO, a Processor in/near Memory Scalable and Fast Overlay architecture as a representative PIM overlay. The results of this study show that the PiCaSO overlay achieves up to 80% of the peak throughput of the custom designs with 2.56× shorter latency and 25% – 43% better BRAM memory utilization efficiency. We then show how several key features of the PiCaSO overlay can be integrated into the custom PIM designs to further improve their throughput by 18%, latency by 19.5%, and memory efficiency by 6.2%. 
    more » « less